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APPLICATION OF THE RESONANT CAVITY METHOD
TO THE MEASUREMENT OF ELECTRON DENSITIES
AND COLLISION FREQUENCIES
IN THE WAKES OF HYPERVELOCITY PELLETS

M. LABITT

M. A. HERLIN

Group 35

TECHNICAL REPORT NO. 248

17 OCTOBER 1961

ABSTRACT

The use of the resonant cavity method for measuring electron densities and collision
frequencies in the ionized wakes of hypervelocity pellets is described. The equiva-
lent circuit obtained from a normal mode analysis of the cavity fields and their inter-
action with the wake plasma is used to determine the plasma parameters in terms of
measurable properties of the cavity. The range of validity of the method is discussed,
along with a sensitivity and accuracy analysis.
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DEFINITIONS OF SYMBOLS

Defined in
Connection
with Equation
Number

(1)

(1), (10), (12),
(13b)

(1), (2),(5)

(30)

(1)
(1)
(35)

1)
(43)

(1)
(1)
(1), (10), (12),
(13a)
(1)

(14)

(1)
(3)

(3)

(33)
(2)

Cavity suéceptance referred to cavity end
plates

Plasma susceptance referred to cavity
end plates

Velocity of li%ht in free space,
2.9979 X 108 meters/second

Effective cavity capacitance referred to
end plates

Series end-effect capacitance referred to
cavity end plates

19 coulomb

Electron charge, 1.602 X 10~
Electric field in cavity
Unperturbed electric field in cavity
Internal field of spheroid

Electric field in center of cavity

Fractional energy loss of electron in
collision

Intrinsic ohmic loss conductance of cavity
referred to end plates

Detector conductance referred to cavity
end plates )

Plasma conductance referred to cavity end
plates

Generator conductance referred to cavity
end plates

Imaginary operator
Plasma conduction current density

Zero- and first-order Bessel functions

Bolizmann's constant,
1.38 X 10-23 joule/degree

Depolarizing factor

Effective cavity inductance referred to
end plates
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Symbol

= B

2 =z

max

Z

min

g
=

QC = wocc/GC
- /
Qy = w,Cc/Gy

Q= a.)oCc/Gg

QL = wocc/ GL

< < <

<

Y, = G, + B,

Defined in
Connection
with Equation
Number

(43)
(11)
(12)
(51)
(48)
(44)
(7
(9)
(8)
(14)
(3)
(1)

(16a, b)
(45)
(43)

(43)

(43)

(3)
(1)
(1)
(1)
(45)

(15)

(1)

Electron mass, 9.108 X 10731 kilogram
Molecule mass

Electron volume density

Electron line density

Maximum detectable electron line density
Minimum detectable electron line density
Incident power from signal generator
Unloaded Q of cavity

External Q of detector output

External Q of generator "output"

Total loaded Q of cavity

Radial coordinate in cavity

Generator impcdance (resistance) referred
to cavity end plates

Deiector noise temperature

Increase of electron energy due to balance
betwecn field heating and collision cooling

Change of electron energy per collision
due to electric field

Change of electron energy per collision due
to molecule recoil and excitation

Energy stored in cavity

Cavity volume

Cavity output voltage referred to end plates
Generator emf referred to cavity end plates

Receiver noise voltage referred to cavity
end plates

V in absence of plasma, equal to Thevenin
equivalent generator emf

Intrinsic admittance of cavity referred to
end plates

iv
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Defined in
Connection

with Equation

Number

(1)

(1), (10), (12)
(36)
(1)

(39
(3)

(1)
(30)
(37)

(33)
(17)
(23)
(29b)

(11)

(3)

(12)
(30)
(11)
(11)
(11)
(45)
(1)

(1)

(26)
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ettt
reespass

Characteristic admittance of generator
output referred to cavity end plates

Plasma admittance referred to cavity end
plates

Admittance of plasma conductance in series
with end-effect capacitance

Cavity input admittance referred to end
plates

Characteristic impedance of slow-wave line

Argument at first zero of Besscl function of
zero order

Length of cavity
Length of coaxial capacitance
Naperian logarithm base, 2.718...

Electric permittivity of free space,
8.85 X 10-1% farad/meter

Spheroid eccentricity

Phase angle of V relative to that of V0
Effective dielectric coefficient of plasma
Free-space wavclength

Magnetic permeability of free space,
47 % 10-7 henry/meter

Electron-molecule collision frequency for
momentum transfer

Cavity radius

Plasma radius

Portal radius

Plasma conductivity

Imaginary part of ¢

Real part of o

Detector response time

Radian frequency of generator
Cavity resonant radian frequency

Plasma frequency
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APPLICATION OF THE RESONANT CAVITY METHOD
TO THE MEASUREMENT OF ELECTRON DENSITIES
AND COLLISION FREQUENCIES

IN THE WAKES OF HYPERVELOCITY PELLETS

I. INTRODUCTION AND REQUIREMENTS

The properties of ionized wakes caused by the passage of hypervelocity bodies may be studied
in the laboratory by means of the two-stage light-gas gun. A central problem in this study is the
measurement of electron density. This problem has been studied in connection with plasmas gen-
erated by other means, such as electrical discharges in gases. One of the most satisfactory
techniques has proved to be the measurement of the complex input or transfer agmittance of a
resonant cavity that contains the ionized gas in a high-electric-field region of the cavi'cy.i‘2 This
report describes the capabilities, precautions and limitations of the cavity technique applied to

the investigation of hypervelocity wakes.
The measurement system design must take account of four features of hypervelocity pellet

experiments which are frequently not met in other applications of the cavity method:

(a) Entrance and exit ports must be provided to permit free passage of the
pellet and to measure a segment of a long wake without loss of control of
the electromagnetic environment.

(b} The presence of the cavity structure must not be permitted to modify sen-
sibly the flow pattern of the wake gases or otherwise modify the plasma
under measurement.

(¢} The cavity construction must be rugged enough to withstand the mechanical
deformations produced by shock waves and other stresses caused by the
hypervelocity flight and firing of the gun.

(d) Data presentation and recording must be accomplished on a singlersweep
basis.

I, CAVITY DESIGN

The cavity employed in recent experiments is shown schematically in Fig.1, and photo-
graphically in Fig. 2. It resonates in the TMy4 o mode. Entry and exit ports are provided in the
circular disk ends, with lengths of circular tubing beyond propagation cutoff tu prevent coupling
of RF energy from the cavity to the region outside. This method is suitable in the absence of
the wake plasma, but must be reconsidered when the pellet and wake pass through and create a
possible propagating mode of the coaxial type. This question is discussed later. The cavity is
cast with heavy walls, especially the end plates, and with ribbing as shown. The weight is about

H 500 pounds. Earlier designs were rejected because the phase angle of the transmitted radiation
B did not return to its original value after the plasma cleared away. This constitutes a sensitive
test for ruggedness.

The cutoff tubes must be made large enough in diameter to offer a minimum interference
with the flow patterns induced by the pellet flight. Since the flow problem is part of the subject

2
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under investigation, it is difficult to estimate the extent of this interference in advance. Feldmzm3

has given results of computations of flow fields for a similar case, which show that the wake
reaches sonic values at a distanee of approximately 50 pellet radii behind the pellet. Beyond this
region the shoek is very weak and the veloeity profile is stabilized. The shock is less than 10
pellet radii from the axis of flight, and the veloeity profile deecays to ambient in about 5 pellet
radii from the axis. Our experiments have employed i_ineh-diameter pellets, and 6-inch-
diameter cutoff tubes, placing the tubes at a distance of 24 pellet radii from the axis. The inter-
action of the flow with the cavity should therefore be small.

M. CAVITY INSTRUMENTATION

The wake electron density and electron-molecule collision frequeney are derived from a
nmeasurement of the transadmittance and a knowledge of the fixed parameters of the cavity. A
simplified block diagram of the apparatus is shown in Fig. 3.

A CW signal from a 450-Mcps signal generator excites the cavity in the TMy, o mode by
means of a magnetic coupling loop. A sample of the field is coupled out with a similar coupling
loop. Both the output signal amplitude and its phase relative to the input signal are presented
simultaneously on a dual-beam oscilloscope. The traces are recorded photographically. In the
actual system, the output of the cavity is converted to an intermediate frequency of 30 Mcps,
where it is relatively simple to construct a phase detector. The detailed block diagram is shown

in Fig. 4.

IV. CAVITY AND CIRCUIT ANALYSIS

The present discussion is implemented by an equivalent circuit derived from a normal mode
analysis of the cavity by using the basic field equations.z’4 Equation (5.4) of Ref.4 (p. 78) gives
the input impedance of a resonant cavity with an arbitrary number of waveguides coupled to the
cavity. This equation is repeated here for two outputs. Only one mode of the cavity is considered
to be strongly excited, and this is accomplished by operation near its resonant frequency with all
other mode frequencies well removed. The impedances of these other modes are small series
values, slowly changing with frequency, and can be lumped into the coupling coefficients, or ex-
ternal Q's, of the two outputs and the resonant frequency of the excited mode. Under these con-

ditions the input admittance becomes

1, (w "’o) 1 1

Y =Y + - + + , 1

g cthg Q. J(wo w €, 9, f E- E_dv Qy ()
Ve a

where the subscript g refers to the waveguide into which the admittance is measured, d refers
to the other coupled waveguide, Ychg is the characteristic admittance of waveguide g, Qc. is the
unloaded Q of the cavity in the absence of plasma, is the resonant angular frequency of the ex-
cited mode, €_ is the electric permittivity of free space (mks rationalized units), J is the con-
duction current density of the plasma, E_ is the unperturbed electric field of the cavity, E is
the field as perturbed by the plasma, v, is the cavity volume, and Qg and Qd are the external
Q's, or coupling Q's, of the two outputs.

An impedance model of the cavity behavior involves the definitions of voltage and current
values, the ratios of which define the impedances, in terms of the electric and magnetic fields.
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The waveguide characteristic admittances Y ch may be defined as ratios of line integrals of the
fields along appropriate paths in the waveguide, or simply as products of fields measured at
reference points in the guides times the characteristic dimensions. This arbitrariness never
becomes a problem in the final presentation of data, since voltage ratios, current ratios and
phase angles always turn out to be the desired quantities. In the present case of the TM01 o-mode
cavity, the constancy of the electric field along the axial coordinate of the cavity suggests refer-
ring all impedances and voltages to the center of the cavity, as though the points at the centers
of the end plates were terminals in the circuit. The voltage difference across the cavity is then
V=E 6 where E is the field at the center of the cavity and § is the length of the cavity. Volt-
age levels in the output lines are proportional to this value. The present definition, although
arbitrary, has the merit of easy and plausible reference to the electric field of the cavity.

R,
AAA
vy
IR
d
T
B¢
GL—Gc+Gd+R_
)
: &
V=V ——,—G°+Gd
a gR
9 G+Gd iy L)

Fig. 5. Equivalent circuit of cavity (upper) and Thevenin equivalent at resonance (lawer).

The various additive terms in the admittance expression of Eq. (1) imply the upper circuit
of Fig.5. The conduction currents in the plasma are accounted for by a complex admittance
Y = G + JB which is connected in parallel with the intrinsic shunt admittance Y = G + iB
of the cav1ty The cavity is excited by a generator represented by the constant voltage source
V_(complex amplitude) and the series impedance R (real for a matched generator as used in
the experiment). This generator excites the cavity through a coupling loop or other coupling de-
vice, which refers the actual values of Vg and R _ to the impedance level defined at the cavity end

b

plates previously discussed. The intrinsic admittance of the cavity in the absence of the plasma
consists of a constant real part Gc’ representing the ohmic losses of the cavity, and an imaginary

part

w
Bc=wcc_-wiT =9oCe (Z)ﬂ——aTo) ’ (2)
c o
& where L and C are the inductance and capacitance of the equivalent circuit and w, = 1/ JIT
is the resonant frequency The detector admittance, again real for a matched detector, is G
referred to the cavity-center reference point.
The equivalent capacitance of the cavity Cc depends on the definition of the voltage which ap-
pears between its terminals. The present definition, V = Eoﬁ, leads directly to an expression
for Cc‘ At the instant when the magnetic field, which is in time quadrature with the electric field,
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is zero, ihc entire cavity energy is stored in the electric ficld. At this instant the energy stored
in the capacitance is U = %CcEgbz. The energy is now computed from the electric field to dc-
termine Cc' The clectric field as a function of radial coordinatc r for the TM,, mode is

given by
= = E ar
E-Ez-DoJo( p) , -

where Eo is the electric field amplitude at the center of the cavity, p is the radius of the cavity,
J ° is the Bessel function of zcro order and a = 2.405 is the first root of J o(az) = 0. The electric
ficld is indepcndent of the axial variable. The total ecncrgy stored in the cavity is then

= P - ar,.2
U= (1/2) €°S° [noJo(Tn 82rr dr

2, 2.2 (3)

=X :
=3 Eoop J1 (a)

€
o
wherce numcrically,
2
J1 (a) = 0.2695

Equating this expression to the cnergy as given in terms of the circuit parameters, we obtain

n’Jiz(a) eopz
C = —2__ 0
c ]

Using the equation for the frequency of the TMo 10 modc

w p
o" _ .
e (4)
we have
2 P eo
wOCc = 1mtJ1 (a) 3 —P'o . (5)

The cavity susceptance becomes, finally,

2 P €o (w “o
Bc =‘ll'(.‘tJ1 {a) 5 r (w—— T) . (6)
o'Vo
Comparison with Eq. (1) shows the equivalence between Yctheg and wOCc, as expressed
in Eq. (5). This factor also multiplies all other terms in Eq. (1). The other circuit parameters

are therefore identified as:

G, = w°QC° . (7
(]
woCc 1
Gg = Qg = R—g ) (8)
w C
Gd = ——onc , (9)

s
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fv J:E,dv

c
= . __s_______
Ye'Ge+JBe'e f — . (10)

The plasma admittance is computed in terms of the plasma conductivity given (in the approx-

imation that Ym is constant) by

nez 1
o=o. tjo = =T e (14)

m v + jw
where e is the electron charge, n is the electron density, m is the electron mass, and v m is
the electron-molecule collision frequency for momentum transfer. Assuming that the electron
density is independent of the axial coordinate z, and that the electrons are found only near the

center of the cavity where E ~ E o' and noting again that 3 C E 6 eo fv E? dv, we find
c
_ 4 Pe N e? i
Ye-ag c(r)erdr-vam_’_jw , (12)

where p, is the radius of the plasma column and N = f n(r) 2rr dr is the number of electrons
per unit length of plasma trail. Separating Eq. {12) into real and imaginary parts,

_Neft _'m _
Ge*Fm )2 + w2 (13a)
m
2
- Ne _ _w
B, = 5’“,,24.,,,2 . (13b)
m

The plasma is characterized by two parameters, N and Vi the determination of which is
the objective of the measurement. The plasma admittance comprises a real and an imaginary
part, both of which can be measured, and which are given by Egs. (43a) and (413b). These equa-
tions can be solved simultaneously for N and Vi using experimental values of G and B In the
experimental situation, however, it is convenient to deal directly with the change of amphtude of
the output voltage and the shift of its phase. We therefore determine first the expressions for
G and B in terms of the output amplitude and phase changes, and then solve for N and Vin:

The lower circuit of Fig. 5 gives the Thevenin equivalent of the upper circuit when the gen-
erator frequency is adjusted to the undisturbed resonant frequency of the cavity. The generator
emf is V = V(Y = 0), and the series admittance is GL = G + Gd + 1/Rg which is the total con-
ductive load of the cavity. The series admittance may be expressed in terms of the loaded Q as

woCe

G, = (14)
L™ @,
The ratio of the output voltage V to its value Vo when Ye =0 is
1/Y G

v =
v, (1/Ye) +(4/G;) Gt G, 1B,
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The magnitude of this ratio, one of the measured quantities, is given by either of

G
$= |g-| =— 5= sine (6a)
o e
G
L
= == c05§0 , (16b)
GL + Ge
where © is the change of phase of V from that of Vo’ given by
Be
tan@ = - -G—L'f‘_G— . {17)
e
Using Egs. (5) and (14),
S = cos ©
£ -—IQL £ =2
Tad, (a) Ml ™
1raJ (a)
=— sin (2]
Solving for Ge and Be,
1raJ (a) N
. = III'_I:I (CO 9 (183)
o g
waJiz(a) €5 sin®
[— —_ . 8h)
B, q £ T (18h)

These equations prov1de the circuit representations of the plasma G and B in terms of the

observable quantities S and ©. These values are now equated to the equwalent quantities in

Eqs. (413a) and (13b) given in terms of the plasma parameters. The resulting pair of equations

are solved for the plasma parameters in terms of the measured quantities S and ©, with the
following result:
_, cos©—8§
Ym~™% " sino : (19)
2.2
_ _mm @ Ji () cos© =S g sin©
= 2 Q * sin© S : (20)
B o8 L

Numerically, « J (a) (1rm/p e ) 1.383 X 10‘4 -1 or 1.383 X 1012 _1. (As a matter of curi-
osity, this coeff1c1ent may be compared with the reciprocal of the classical electron radius

=R e / 47m.) H is noted that the electron line density N, in electrons per unit length, is given
by th1s technique, with no information on the radial distribution of electrons or trail diameter.

I the trail diameter exceeds the diameter of the region of nearly constant electric field, the pro-

cedure yields the value of

P
S‘ 3 Ez(r) n(r) 2rr dr
o
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V. LIMITATIONS AND PRECAUTIONS

A. Breakdown of Perturbation Theory

The equivalent circuit of the cavity and conducting plasma (Fig. 5) and the expression for the
plasma admittance [Eq. (12)] are obtained under the small perturbation assumption that the cavity
electric field is not greatly disturbed by the presence of the conducting plasma. Two criteria’
may be applied to determine whether this assumption is valid. First, the cavity must not be per-
turbed over-all to the point where its resonant frequency is changed a large fraction of its un-
disturbed value, or its Q is reduced to the neighborhood of unity. These two restrictions may be
combined into the condition that
<<1 {21)

’

1 w wo)
(-t
Q; w, T W
where Qe is the contribution to the cavity Q for which the plasma is responsible, @, is the reso-
nant frequency as perturbed by the electrons and w is the original resonant frequency, equal to

the applied frequency. This condition may be expressed in terms of the equivalent circuit param-
etcrs defined in Eqs. (5) and (12):

IYeI = wocc !

which reduces to

2.2 m 2, 2
N<<a Ji(a)"—2’i+vm/w . (22)

Koe

This quantity has already been seen in Eq. (20). It is concluded that the cavity is not seriously
perturbed until the line density of electrons approaches the order of 1012 cm'i, or higher if
Y exceeds w.

In applying perturbation theory to cavities, it is necessary to consider not only the over-all
perturbation of the cavity fields, but also the local perturbation. For example, a small, per-
fectly conducting objezt changes the cavity frequency only a slight amount, but causes a very
large local perturbation in the vicinity of the object. A sufficient, but unduly restrictive, condi-
tion for negligible local perturbation is that the effective dielectric coefficient of thc plasma be
near unity. The effective dielectric coefficient of a medium of conductivity ¢ is given by

_ 4
k=1 +jw€° . (23)

The conductivity for a plasma is given by Eq. (11). The near-unity condition on dielectric coeffi~

cient is equivalent to

o
2 | <t (24)
o!
or, using Eq. (11),
me _w
2 2
n << % t+v /o . (25)

e
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In the collisionless case v /= = 0, this expression reduces to the familiar plasma frequency con-

dition

2 nez
“p = me «<1 . (26)
o
‘Condition (24) can be relaxed for the wake instrumentation configuration of cavity fields.
The eleciric ficld of the cavity is parallel to the wake axis, so that the field inside the wake re-
gion is continuous with the outside field. Condition (24) restricts the conduction current density
of the electrons, J = ¢E, to values small compared with the Maxwellian displacement current
density J 4= jwe oE’ However, even when the conduction current becomes larger than the dis-
placement current, the radius of the plasma may be so small that the penetration of the electric
field is complete and no significant attenuation or phase shift occurs over the short distance.
This statement holds if the propagation factor exp [jw\hT /clp ! is near unity, or

|$‘£<‘:Lx_pel<<i ) @n

B

Using Eqgs. (23) and (11), and taking lo| >> we , this condition reduces to

N = mpZn << T, i+vri/w2 , (28)

Boe
which is substantially the same as the large complex Q condition (22). Condition (28), along with
the parallel E-field configuration, is a sufficient condition for small perturbation.
That (28) is less restrictive than {25) may be seen by finding the frequency at which they

become equal:

2
mm_ | 752 2MY 2, 2
— J1 +vm/w =7p, > i+vm/w ,

ke e
or

wp

- =1 . (292)
or

=2 mamp, (29b)
wheré A is the free-space wavelength. This result shows that, for plasma radii much smaller
than A/27, which is the case when a plasma is contained within a low mode cavity, condition (28)
is less restrictive than condition (25).

Strictly speaking, condition (25) is not correct anyway. A high mode cavity, whose dimen-
sions are large compared with the free-space wavelength, might fulfill condition (25) but not
(28). The conduction current would then be small in compé.rison with the displacement current,
but the extent of space including the plasma would be so large that the cumulative effect of the
locally small conduction current on the amplitude or phase of the propagating wave would in-

validate the perturbation assumption.

10
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A final eomment on the use of perturbation theory eoncerns extension of the theory to a
higher order of perturbation or reeourse to a more exaet analysis. Although a modest improve-
ment in the range of usefulness of the teehnique might be aehieved in this way, a basie limit lies
in the loss of sensitivity of the method when the plasma is so dense that the field is either re-
fleeted or absorbed, and therefore does not penetrate at all. This limit does not lie far beyond
the breakdown point of perturbation theory. A more aeeurate analysis of a low pressure plasma,
with few collisions, and a small eleetron density gradient, might permit the plasma to be probed
more extensively, but the eavity teehnique is probably not the best method for doing so.

B. End Effects

The foregoing analysis of the eireuit representation of the plasma in the eavity assumed an
axially homogeneous plasma aligned with the eleetrie field. This assumption does not hold near
the eavity ends, where the eutoff portals distort the field to provide a radial component of field.
A simple and rough estimate of this end effect may be made by using the cireuit approximation
of Fig. 6. A short length of coaxial eapaeitanee CS is regarded to be eonnected in series with the

—

PLASMA
1

CAVITY

5]

cavITy )
Yo | “enos f

I /i
c, ‘ (;‘
b3
{s

eleetron admittance Ye at each end. The inner and outer radii of the coaxial capaeitanee are the

plasma radius Peo and the eutoff portal radius p_, respectively. The length of the capaeitance is

more difficult to identify, but is designated by 65. The series value of two such eapacitances,
one at each end, is given by

Fig. 6. Circuit with end capacitance.

CS weoég

-s._-_9°38 30
2 1n(pp/ [ (30)
The admittance of these capacitances in series with the plasma admittance Y . is given by

A 1 1
- = <
Ye Jw(Cs/Z) Ye

or

Y
Y(’3 = WZTJ.JC—S‘)— . (31)
it is noted that, when collisions are absent, Ye is a negative imaginary number and Eq. (31) has
a resonant denominator. Collisions modify the resonance in a conventional way.

The condition for small end effects is that the second term in the denominator of (31) be
small in magnitude compared with unity. This condition is equivalent to saying that the series
impedance of the capacitances be small compared with the plasma impedance. Using Eq. (30) to
compute the former and Eq. {(12) to compute the latter, the condition becomes

11
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' ™m > > 0466
N << 5 1+vm/w _—s . (32)

)
Kot c” In(p,/pe)

This expression differs from (28) by the factor Y 5 /et ln(pp/ pg). The logarithm is not much
greater than unity, even for fairly large radius ratios. If & and & g 8TC of the order of A/2r, the
entirc factor is also of the order of unity. Cavity dimensions are usually taken of this order.
The new condition is thercfore substantially the samc as the previous conditions (22) and (28). If
the cavity is madc short {(pancake shaped) the series-capacitance limitation is more stringent.
The serics-capacitance effect may be estimated in a different manner, which affords a dif-
ferent point of view as wcll as another approach to selecting the dimensions to put into the ex-
pression (32). This method considcrs the part of the plasma which is exposed to the electric
field of the cavity as a prolatc spheroid with major scmiaxis 8/2 and minor semiaxis Per If con-
dition (28) holds, the region containing the plasma may be treated quasistatically; that is, the
clectrostatic depolarizing effect of the body shape may be used to compute the field inside the
plasma in terms of the field outside (identified with the "field at infinity" in the corresponding
electrostatic problem). The spheroid is therefore characterized by a depolarizing factor £

given by8

(33)

2
_1-¢ 1 +€
1= 253 (-2€ +1n -1—:—5) )

where € is the eccentricity given by

€= /1—4,;:/45Z . (34)

The field Ei inside the plasma is given in terms of the external field Eo and the equivalent polar-

ization
P=¢ —— E,
o jwe i
as
E.-E -1 2 =E — 12 E,
i o € o jwe i
o
Solving for Ei'
Eo
E (35)

i = T+ Ho/jwe )

d use the modified internal field of Eq. (35) to compute the cur-

rent density J. The denominator is treated as before, since the integral here contains contri-
in contrast with the situation in the in~

butions to the integrand from all regions of the cavity,
tegral of the numerator where the integrand is zero except where the conducting material is
present to alter the field. As before, CO/eo Ve Eldv = 1/E§62, but now J = oE;. Thus

We now return to Eq. (10), an

Y
= (36)

: 2 ’
1+ (léYe/J'trweope )

1
e

12
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where Ye = xp:c/o. In this expression the integration is simplified by the assumption that the
conductivity is constant throughout the plasma to the radius p e’ The shape is assumed cylindri-
cal in the integration, even though it was taken to be spheroidal to obtain £. It is noted that, in
the collisionless case, Eq. {36} has a resonant denominator, as was true of Eq. (31).

Equation (36) is now compared with Eq. {(31) to obtain the equivalent value of CS:

2ne opez
Ce= 15
Substituting the value of £ from the leading term in the expansion of Eq. (33} in the small quan-
tity p e/15
2
40 e ]
t=—Ing
é Pe
we obtain
ne 06
Cs= 2 in{e/er,) (37)

where € = 2.718... is the Naperian logarithm base.
Equation (37) may be compared with Eq. (30). The length 8 3 of the coaxial condenser appears
here as one-fourth of the cavity length, and there is a minor difference in the logarithmic term.

The coaxial condenser envisions different field details from those of the spheroid, and neither is

Wl

an exact description of the real fields. However, the conclusion in the paragraph following
Eq. (32) is supported by either approach, so that the concept of a series-capacitance effect and

B g

the order of magnitude of the upper limit of electron density imposed by the eifect are reasonably
well established.

g, i I

C. Surface-Wave Coupling Through Portals

The portal tubes through which the pellet passes are chosen of sufficiently small diameter
to be well into the cutoff region, to prevent electromagnetic energy from escaping through this
route from the cavity. However, when the effective dielectric coefficient of the plasma is suffi-
ciently low, a surface-wave, or slow-wave, type of propagation can take place.9 In a lossless
plasma this wave propagates at x < —1, being strictly confined to the surface when x = —1. With
reduction of x below —1, the fields penetrate further into the regions away from the surface.
Outside the plasma this trend continues indefinitely, but inside the penetration reaches a maxi-
mum and then decreases. As « approaches —e«, the fields inside the plasma become surface
fields again, whereas the outside fields become identical with those of a coaxial line made of
perfect conductors. The physical basis of these surface waves lies in the characteristic which
a medium of negative dielectric coefficient has of accumulating positive charges at the tails of
the E-lines rather than at the heads. These E-lines can thus leave positive surface charges,
which they produce, on both sides of the plasma-free-space interface, and terminate on simi-
larly produced negative charges. The surface charge wave is peristaltic.

Since such a propagating mode can exist, the effectiveness of the *cutoff" tubes is question-

18]

able. In order to estimate the geriousness of this effect, we compare twice the characteristic
impedance of such a wave with the impedance of the plasma. If the former is small in comparison

13
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with the latter, the impedance of the series coaxial lines cannot falsify ilie measured values of
plasma impedance. The actual impedance reflected from the coaxial line into the cavity depends
on the impedance that the line sees on the outside, and is equal to the characteristic impedance
only if the line is matched. However, the order of magnitude of electron density at which this
effect is important can at least be estimated by this comparison. Although the analysis is not
carried through here, the results are presented.

Near the onset of propagation, where x is equal to or slightly less than —1, the fields are
closely confined to the region near the surface. The electric and magnetic fields are disposed
in the same directions as in the usual coaxial TEM mode. The current in the line is obtaired by
a line integral of the magnetic field around the plasma inner conductor at the interface. Since

this integral is taken at the surface where the magnetic field is nonvanishing, it is of normal size.

The potential difference, on the other hand, is a line integral of the electric field along a radial
path from the interface to the outer conductor. Since the field drops rapidly in going away from
the surface, the potential difference is very small. The characteristic impedance, which is the
ratio of potential difference to current, is therefore also small.

As the electron density is increased beyond this value, and x drops further below —1, the
characteristic impedance rises owing to the increasing penetration of the electric field toward
the outer conductor. It can be shown that, in the intermediate region, where x << -1 but
N << mm/p oez, the characteristic impedance is given approximately by

|l p
. (38)
°h jZWp. e N pe

Since this value decreases with increasing N, Z ch must pass through a maximum. As N goes
beyond the value 1rm/p. e? toward infinity, Eq. (38) no longer holds, but rather Z ch levels out to
the value for the sunple coaxial line

_ 1 Fo fg
Zch = 2w /e—ol"pe . (39)

The plasma impedance for the lossless case (um = 0) is given by

_ &6 _ . wmé _ .wmb
2o =d—=2 271 _=2 - “0)
TP, T Tpone Ne

If we require the magnitude of Z g to be large compared with twice the characteristic impedance
as given by Eq. (38), we obtain

N << _Fm wzéz

1
“oez cZ Zln(pp/pe)

(41)

Since & is of the order of A/2r, and the In-factor cannot be greatly different from unity, the
slow-wave effect begins to be a problem when N approaches 1012 cm'1. However, this is just
where Zch' as given by Eqgs. (38) and (39), agrees owing to the leveling off, so that we could just

55 well have required that (40) be large compared with twice (39), resulting in

N << Tm_ wd d . 42)
poe?- c ln(pp/pe)
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If cleetron line densities well below 1012em"

peeted from the portal impedanecs. liowever, another possible effeet of the slow=-wave propaga-
tion may oceur within the cavity itself. The wave velocily is zero at k = -4, and riscs as « de-
ercases until, at —w, it reaches the free-space propagation veloeity e. It is this behavior whieh
leads to the term "slow wave One can thercfore visualize an entire series of new euvity modes
using the glow-wave propagation mechanism. If one of thesc modes coincides in frequeney with
the applied frequeney (that of the undisturbed TMM 0 mode), it will also be exeited. The degrec of
exeitation will depend on the relative field eonfigurations of the two modes. It scems reasonable
that the coupling will be related to the ecommon impedances, so that the eriterion (42) for weak
external eoupling through the portal tube must be similar to the eriterion for exeitation of slow-
wave resonances. If this surmise is correet, similar eleetron densities are required.

arc measured, little diffieulty may be ex-

D. Eiectron Heating by the RF Field and Measurement Sensitivity

If the compunents of the measurement system are well engineered for siability and isolation
from external disturbanee, the ultimate sensitivity of the measurement of eleetron density and
eollision frequeney is determined by the comparison between the front-end noise of the amplitude
and phase deteetors and the output signal of the cavity. The eavity output signal can always be
inereascd by an inercase in the signal generator power. The limitation beecomes the maximum
power that ean be absorbed by the cavity without execeding the permissible disturbance to the
eleetron energy distribution function. Heating of the eleetrons by the eavity fields is therefore
of interest in determining the sensitivity and aceuraey of the experiment.

The power per unii voiume delivered to the eleetrons by the cavity ficld is given by

nezv EZ
P=go By —0 0,
2m(y " + w")
m
where o, is the real part of the complex eonduetivity of the plasma, given by Eq. (11). This
value is proportional to the electron density and to the collision frequency; therefore, the energy

delivered to each electron at each collision is
E 2
o

2m(y 24 wz)
m

eZ
AuE =
The energy transfer from the field to the electron is associated with the collision process be-
cause the in-phase component of the velocity of the electron is generated only in the collisional
deflection. In the absence of collisions, the velocity is in time-quadrature to the electric field.
The energy lost in an elastic collision between an eleetron of mass m and a molecule of

mass M due to clastic recoil, on the average, is given by .

_  2m
Auc—— M Au

where Au is the amount by which the electron kinetic energy exceeds that of the molecule. Di-
atomic molecules are excited into rotational and vibrational states even at low energies, so that
the mass ratio 2m/M is replaced by a larger factor g which is best determined experimentally.
Huxley and Zaazou report g =1.3 X 10_3 for air in the energy range of 0.2 to 0.8 ev (see Ref. 10).
The steady-state increment of electron energy above the ambient thermal energy is given by
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+Auc=0

or
ezE:
R
ng(vm +w®)
The maximum field E 5 which may be applied if Au is the maximum permissible increment of
electron energy is therefore

ngAu(v; + wz)

E . 22 . (43)
This result may be expressed in terms of the maximum incident power from the signal
generator
2
v 2 Q

Pi= gk = 5o

g Q

This expression holds only when electrons are sparse or absent. Using V = E°6, solving for
B o’ equating to (43), and finally solving for P,

aJi(a)g —§- (1+ m>ﬂ‘z cAu . (44)
e

Typical numerical values are g 1.3 %1073 , 8/p=1, Qg = 5000, Q, = 2500, v /w =1,

Au = 0.4 X(3/2) kT, k = 1.38 X 10~ Joule/degree, T = 300°K. The maximum incident power for
these values is Pi =3.2X 10'5 watt, or 32pwatts. More power may be applied when the electron
density is high, but variation of signal generator power for optimum conditions at each electron
density is very inconvenient. However, the power level computed above is always safe.

We next consider the minimum electron density which can be detected subject to the maxi-
mum excitation field as computed abové. Minimum electron density implies a nearly plasma-
free cavity (Ye small). The limit is regarded as set by detector noise with a noise temperature
T a4 In practice, the detector calibration is reliable only if the impedance connected to the de-
tector input is constant, requiring a device such as a ferrite isolator between the cavity output
and the receiver. With an isolator, the cavity presents a matched input impedance to the de-

tector of R d4 = 1/G d irrespective of the plasma density in the cavity or of the coupling conditions.

For Y e small, an rms noise voltage

4kT d
Vn = G u (45)

is therefore indicated by the detector, where 7 is its response time. The signal voltage is
given by Eq. (15), which for IYeI << GL’ or, using Egs. (12), (4), (5) and (14),
1

b |
2.2 TIm /( FI'I-'\
N<<—Q— o Ji {a) 5 1k —y (46)
L poe’ u
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V~V°<~-§f) . (47)

The magnitude of the difference voltage V oIYeI /Gy, is compared with the noise voltage for mini-
mum detectable electron density. Using Eq. (12) for Yo

Von et 1 5 d
GL6m v2+wz Gdf
m

determines the minimum detectable N. Substituting Eq. (43) for V o/ §=E o’ using Eqs. (9), (14)
and (5), and solving for N,

1
N /ZaJ (a)—z-ggAup‘: = - (48)
o]

Since V — V is proportional to N, this expression also represents the error in the meaSurement

of N nt any N consistent with (46). A typical set of numenc.-.l values is: Qd/ QL = iD

p/8 =1, T = 900°K, Au/k = 30°K, g=1.3X% 1073, 7 = 107> sec, giving N i =3X% 103cm
At the opposne limiting case of IY | >> G, or

-1

l'Z

i 5 _m

N>>QLaJ1() = 1+ 5, (49
ko€ w

the plasma becomes a heavy load on the cavity and the output voltage drops to a low value

VavVv GL/Y . (50)

It is of interest to see at what electron density the output voltage drops into the noise. This con-
dition does not define a real upper limit to measurable electron density, since the signal genera-
tor power may be increased to compensate for the drop in electric field in the plasma without

incurring an increase of electron energy beyond the set value of Au. Specifically, the generator
may be turned up until the new value of V is equal to the old limitation on V0 defined by Eq. {(43).

The ratio of permitted veltage increase, by Eq. (50), is

1Yl  q N 1

G T 242 2
L o J1 (o) 1rm/p.oe “ +"rf1/w2

which is of the order of QL for N = 7rm/p. e , the order of the maximum N that can be measured
without invalidating the perturbation assumptmns For QL of the order of 2500, the 32-uw inci-
dent power previously computed may be increased to 200 watts. However, it is inconvenient to
design the components of the system to chenge characteristics with changes in electron density.
It is therefore of interest to determine the maximum electron density which may be measured at
a signal generator setting which does not unduly disturb the electron energy even when the elec-
tron density is low. This limit is determined by equating the magnitude of V in Eq. (50) to the
noise voltage in Eq. (45). Expressing the G's in terms of the Q's and manipulating as in the

computation of the low N limit,
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Typical numerical valucs of QI ,Qd = 106. and others as given above, lead to N — 6 %X :to12 cm’”
Innsmuch as this value is beyond the small pertur
creasc the signal generator

N wp s w

10.

172, 3 )

" ot R ‘IIF'I "]

i W& [ Tm m

N 8 — fJ = Jor (|+ ) . (51)
max Q! r:‘Qd J “,n- (“uﬁz\) wE

bation limit, it does not appear necessary to in-
power beyond the safc value in the absenee of clectrons.
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